

2023. 2(2). 22–31

Железобетонные конструкции

ISSN 2949-1622 (PRINT) ISSN 2949-1614 (ONLINE) HTTPS://G-B-K.RU

REINFORCED CONCRETE STRUCTURES (ZHELEZOBETONNYYE KONSTRUKTSII)

УДК 624.07 DOI: 10.22227/2949-1622.2023.2.22-31

НАУЧНАЯ СТАТЬЯ/ RESEARCH ARTICLE

К определению ширины полки таврового сечения ребристых перекрытий

Ф.С. Замалиев^{1*}

¹Казанский государственный архитектурно-строительный университет, Казань, Российская Федерация

*zamaliev49@mail.ru

Ключевые слова: ребристые перекрытия, тавровое сечение, ширина полки, аналитические зависимости

История статьи Поступила в редакцию: 3.02.2023 Доработана: 17.02.2023 Принята к публикации: 22.02.2023

Для цитирования

Замалиев Ф.С. К определению ширины таврового сечения ребристых перекрытий // Железобетонные конструкции. 2023. Т. 2. № 2. С. 22–31.

Аннотация. Ребристые перекрытия в железобетонном, а в последнее время в сталежелезобетонном и деревобетонном вариантах занимают значительное место в общем объеме конструкций зданий и сооружений. Анализ нормативной и технической литературы показывает, что в отечественных и зарубежных источниках для назначения эффективной

ширины полки таврового расчетного сечения предлагаются эмпирические зависимости, что не приводит к экономичным и надежным проектным решениям.

Цель исследования – определение расчетной эффективной ширины полки таврового монолитного сечения или составного сечения перекрытия. На основе анализа напряженно-деформированного состояния изгибаемого таврового сечения записаны аналитические выражения и получены формулы для определения расчетной ширины полки.

Effective Width of the T-section Flange of Ribbed Slabs

F.S. Zamaliev¹*

¹Kazan State University of Architecture and Civil Engineering (KGASU), 420043, Russia, Kazan, Russian Federation

*zamaliev49@mail.ru

Keywords: ribbed slab, T-section, flange	Abstract. Ribbed ceilings in reinforced concrete, and more recently in steel-
width, analytical dependencies	reinforced concrete and wood-concrete versions, occupy a significant place in
Article history Received: 3.02.2023 Revised: 17.02.2023 Accepted: 22.02.2023	the total volume of buildings and structures. An analysis of the regulatory and technical literature shows that in domestic and foreign sources, empirical dependencies are proposed for assigning the effective width of a T-section flange, which does not lead to economical and reliable de-
For citation Zamaliev F.S. Effective Width of the T- section Flange of Ribbed Slabs. <i>Reinforced</i> <i>concrete structures</i> . 2023;2(2):22–31.	The purpose of the study is to determine the calculated effective width of a flange of a tee monolithic section or a composite section of a floor. Based on the analysis of the stress-strain state of a bent tee section, analytical ex-pressions are written and formulas are obtained for determining the design flange width

Фарит Сахапович Замалиев, кандидат технических наук, доцент, Казанский государственный ахитектурно-строительный университет (КГАСУ), 420043, г. Казань, ул. Зеленая, д.1; eLIBRARY SPIN-код: 4926-5781, Scopus: 57208104857, ORCID: 0000-0002-3563-2994, E-mail: zamaliev49@mail.ru.

Farit S. Zamaliev, Candidate of Technical Sciences, Associate Professor, Associate Professor of the Kazan State University of Architecture and Engineering, (KGASU), 1 Zelenaya st., Kazan, 420043, Russian Federation, eLIBRARY SPIN-code: 4926-5781, Scopus: 57208104857, ORCID: 0000-0002-3563-2994, E-mail: zamaliev49@mail.ru.

© Замалиев Ф.С., 2023

CO This work is licensed under a Creative Commons Attribution 4.0 International License

https://creativecommons.org/licenses/by/4.0/

введение

В ребристых железобетонных перекрытиях и в ребристых плитах составного сечения главным несущим элементом являются условные балки таврового сечения в направлении ребер-балок. При проектировании ребристых перекрытий рассматривают в первую очередь напряженное состояние этого изгибаемого элемента.

В ребристых железобетонных конструкциях и в сталежелезобетонных перекрытиях для определения расчетной ширины плиты $\langle b_f \rangle$ в нормах по железобетонным и сталежелезобетонным конструкциям предлагают разные эмпирические выражения, где $\langle b_f \rangle$ зависит от геометрических параметров изгибаемого элемента (пролета, шага балок, толщины плиты и т.д.).

В нормах по железобетонным конструкциям (СП 63.13330): а) ограничивают расчетную ширину $b'_f \le 1/6$ пролета; б) при $h'_f \ge 0,1h \ll b'_f$ » равен расстоянию в свету между продольными ребрами; в) при $h'_f \le 0,1h \ll b'_f$ » равен 6 h_s ; г) при $0,05h \le h'_f \le 0,1h \ll b'_f$ » равен 3 h_s .

В нормах по сталежелезобетонным конструкциям (СП 266.1325800.2016):

а) «b'_f» ограничивают 1/12 пролета;

б) «*b* '_{*p*}» ограничивают $2(a + h_s)$, где a - 0,5 ширины полки стального двутавра.

В техническом кодексе (EN 1994-1-1-2009) предлагают определять « b_{eff} » в зависимости от расстояния между анкерами и эффективного свеса полки, который в свою очередь может быть равным L/8, но не более 0,5 шага балок. Эффективная ширина полок зависит и от податливости бетонных полок, обусловленных деформациями сдвига, которые зависят от типа и особенностей работы анкеров, исследованиям, которых посвящены работы [1-23]. В п.5.4.12 Еврокода (EN 1994-1-1-2009) отмечено: «Следует учитывать податливость посредством точного расчета или используя эффективную ширину пояса (плиты)», что диктует необходимость правильного назначения « b_f ». Однако, в Еврокоде для определения эффективной ширины приведены эмпирические выражения, зависящие только от геометрических параметров сечения. Считаем, что исследования по поиску эффективной ширины необходимо вести в зависимости от действующего внешнего изгибающего момента и внутреннего напряженного состояния изгибаемого элемента и записать выражения для определения « b_f » ребристого перекрытия.

На основе аналитического обзора литературных источников и нормативных документов в статье [1] показаны сегодняшнее состояние и перспективы применения сталежелезобетонных конструкций. Экспериментальным исследованиям механизма передачи напряжений от стали к бетону посвящена статья [2]. Численные исследования и сопоставления с результатами экспериментальных исследований сталежелезобетонных балок со шпильками на стыке слоев отражены в источнике [3]. Результаты экспериментальных исследований сдвигового соединения уголковых анкерных упоров сталежелезобетонного перекрытия приведены в статье [4].

В статье [6] показано влияние горизонтальных нагрузок на работу стад-болтов в составе комбинированных плит перекрытий. В [7] представлены результаты испытаний составных сталебетонных балок со стальным профнастилом и шпильками работающими на сдвиг.

Несущая способность стыка слоев проанализирована в [8] методом конечных элементов с использованием ABAQUS. Статья [9] посвящена экспериментальным исследованиям составных стержней с вертикальными связями слоев. В обзорной статье [10] даны сегодняшнее состояние и перспективы развития сталежелезобетонных конструкций. В статье [11] дан параметрический анализ развития и тенденций исследований составных балок. В [12] проанализирован напряженно-деформированное состояние «Т» образного составного сечения из дерева и бетона.

Статья [13] направлена на создание инновационного решения перекрытий композитной конструкции, которое сочетает в себе тонкую плиту из высокопрочного железобетона с балками из клееного бруса. Источник [14] рассматривает конструктивную эффективность балок из древесины и бетона. Статья [15] посвящена экспериментальным исследованиям панелей из дерева и бетона армированных профнастилом из стекловолокон, а [16] – балки, усиленной углеродным волокном. [17] посвящена древесно-бетонным мостовым конструкциям. В статье [18] представлен анализ работы композитных конструкций из дерева и бетона с неметаллическими клеевыми соединительными элементами. Статья [19] посвящена экспериментальным исследованиям напряженно-деформированного состояния композитного бетонного перекрытия с деревянными ребрами. [20] отражает результаты испытаний древесно-бетонных композитных элементов. Статья [21] посвящена экспериментально-теоретическим исследованиям сборных железобетонных балок таврового сечения с предварительным напряжением и без него. В руководстве по проектированию [22,23] даны схемы по анализу эффективной ширины полки тавровых балок сталежелезобетонного перекрытивной пирины полки тавровых балок сталежелезобетонного перекрытия.

методы

Рассмотрим наиболее распространенные типы ребристых перекрытий в малоэтажных и многоэтажных зданиях: монолитные плиты, возводимые с использованием съемной опалубки и опертые с определенным шагом на железобетонные балки и перекрытия с монолитной плитой, опертой на сталебетонные ребра-балки, деревобетонные перекрытия с деревянными ребрами, бетонные (железобетонные) монолитные плиты по стальным ребрам-балкам.

Рис. 1. Фрагменты ребристых железобетонных перекрытий с расчетными тавровыми сечениями Figure 1. Fragments of ribbed reinforced concrete slabs with design T-sections

На основании гипотезы плоских сечений, диаграмм зависимостей «напряжениедеформация» и принимая условие совместности деформации бетона и стали на уровне контактной поверхности, по напряжениям в бетоне « σ_b » и напряжениям материала ребра определяем внутренние усилия в сечении. Запишем выражение для определения положения нейтральной оси в изгибаемом элементе таврового сечения (рис. 2).

Рис. 2. Расчетная модель железобетонных тавровых сечений **Figure 2**. Design model of reinforced concrete T-sections

Уравнение для определения положения границы сжатой зоны, предполагая прямоугольную эпюру напряжений в бетоне, будет (пренебрегая влиянием гибкой арматуры полки) $R_b b_f h_f + R_b b' (x - h_f) - R_s A_s = 0$ (1)

$$x = \frac{R_{s}A_{s} - R_{b}b_{f}h_{f} + R_{b}bh_{f}}{R_{b}b} = hf + \frac{R_{s}A_{s}}{R_{b}b} - \frac{h_{f}b_{f}}{b}$$
(2)

Уравнение моментного состояния

$$M \le R_b b_f h_f (x - 0.5h_f) + R_b b \left(x - h_f \right) \frac{x - h_f}{2} + R_s A_s \left(h_0 - x \right)$$
(3)

Подставляя «*x*» из (1) в (2) и проведя математические преобразования и сокращения получим квадратное уравнение. Решая квадратное уравнение относительно «*b_f*» получим.

$$b_{f} = \frac{\left[R_{b}h_{f}^{2}\left(0,5+\frac{1}{b}\right)+R_{s}A_{s}h_{f}\frac{1}{b}\left(\frac{1}{b}+1\right)\right]\pm\sqrt{\left[R_{b}h_{f}^{2}\left(0,5+\frac{1}{b}\right)+R_{s}A_{s}h_{f}\frac{1}{b}\left(\frac{1}{b}+1\right)\right]^{2}-4\left[R_{b}h_{f}^{2}\left(-\frac{1}{b^{2}}-\frac{0,5}{b}\right)\right]\left[R_{s}A_{s}(h_{0}-h_{f})-0,5\frac{R_{s}^{2}A_{s}^{2}}{R_{b}b}-M\right]}{2R_{b}h_{f}^{2}\left(-\frac{0,5}{b}-\frac{1}{b^{2}}\right)}$$
(4)

Учитывая, что фактическое значение ширины « b_f » может быть только с положительным знаком и обнуляя малыми величинами на уровне 0,01-0,005 от $1/b-1/b^2$ при реальных ширинах ребер перекрытий гражданских зданий будем иметь:

$$b_{f} = \frac{R_{s}A_{s}}{R_{b}h_{f}} + \frac{50}{R_{b}h_{f}^{2}} \sqrt{0.25R_{b}^{2}h_{f}^{4} + R_{b}h_{f}^{3}R_{s}A_{s}/b + R_{s}^{2}A_{s}^{2}h_{f}^{2}/b^{2} - 4(0.01R_{b}h_{f}^{2})R_{s}A_{s}(h_{0} - h_{f}) - 0.5\frac{R_{s}A_{s}^{2}}{R_{b}b} - M$$
 (5)

где R_b , R_s – расчетные сопротивления бетона и арматуры;

As; h_f; *h₀*; *b* – геометрические параметры сечения

Уравнения для получения «*x*» и моментного состояния составного сечения, состоящего из бетонной полки и деревянного ребра имеют следующий вид.

Рис. 3. Расчетная модель деревобетонного сечения a) эпюра напряжений; б) поперечное сечение Figure 3. Design model of a wood-concrete section a) stress diagram; б) cross section

$$N_{x} = \int_{0}^{h_{f}} \sigma_{b} \left(\varepsilon_{b}\right) b_{f} dx + \sigma_{a}^{'} \left(\varepsilon_{a}\right) A_{a}^{'} + \sigma_{a_{1}} \left(\varepsilon_{a}\right) A_{a} + \sigma_{d}^{'} \left(\varepsilon_{d}\right) A_{d}^{'} - \sigma_{d} \left(\varepsilon_{d}\right) A_{d} = 0$$

$$\tag{6}$$

$$M = N_b Z_1 + N_s Z_2 + N_s Z_3 + N_d Z_4 + N_d Z_5$$
(7)

ТЕОРИЯ БЕТОНА И ЖЕЛЕЗОБЕТОНА

При рассмотрении расчетной модели с прямоугольной эпюрой в бетонной плите и треугольной в деревянном ребре для простоты, при не учете гибкой арматуры в плите уравнение для определения «*x*» в плите принимает вид:

$$R_{b}b_{f}h_{f} + \frac{1}{2}R_{d}b(x - h_{f}) - \frac{1}{2}R_{d}b = (h - x) = 0$$
(8)

Уравнение моментного состояния

$$M = R_b b_f h_f \left(x - 0.5 h_f \right) + \frac{1}{2} R_d b \frac{2}{3} \left(x - h_f \right)^2 + \frac{1}{2} R_b b \frac{2}{3} \left(h - x \right)^2$$
(9)

Подставляя «*x*» в уравнение моментного состояния, получим квадратное уравнение и можем записать искомую ширину «*b*_f»

$$b_{f} = \frac{3}{10} \frac{R_{d}b}{R_{d}b_{f}} \left(\frac{5}{3}h_{f} + \frac{11}{6}h\right) + \frac{3}{10} \frac{R_{b}b}{R_{b}^{2}h_{f}^{2}} \sqrt{\left(\frac{5}{3}R_{b}h_{f}^{2} + \frac{11}{6}R_{b}h_{f}h\right)^{2}} - 4\left(\frac{5}{3}R_{b}^{2}h_{f}^{2} / R_{d}b\right) \left\{\frac{1}{3}R_{b}b\left[h^{2} + 0.5\left(h_{f} + h\right)^{2} + h\left(h_{f} + h\right)\right] - M\right\}} (10)$$

где *R*_b, *R*_d – расчетные сопротивления бетона и древесины;

h_f; *h*; *b* – геометрические параметры сечения.

При повышенных требованиях огнестойкости к перекрытиям зданий, стальные ребра перекрытия принимают обетонироваными (рис.4). Для таврового сечения сталежелезобетонного перекрытия, состоящего из железобетонной плиты и обетонированного стального двутавра будем иметь:

$$N_{x} = \int_{0}^{\infty} \sigma_{b} \left(\varepsilon_{b}\right) b_{f} dx + \sigma_{a}^{'} \left(\varepsilon_{a}\right) A_{a}^{'} + \sigma_{a_{1}} \left(\varepsilon_{a}\right) A_{a} + \int \sigma_{bp} \left(\varepsilon_{b}\right) b(x - h_{f}) + \sigma_{ap}^{'} \left(\varepsilon_{a}\right) A_{ap}^{'} + \sigma_{s_{1}} \left(\varepsilon_{s}\right) A_{s_{1}} - \sigma_{s_{2}} A_{s_{2}} - \sigma_{ap} \left(\varepsilon_{a}\right) A_{ap}$$

$$(11)$$

$$M = N_{b}Z_{1} + N_{a}Z_{4} + N_{a}Z_{5} + N_{bp}Z_{3} + N_{ap}Z_{8} + N_{s_{1}}Z_{6} + N_{s_{2}}Z_{2} + N_{ap}Z_{7}$$
(12)

Рис. 4. Расчетная модель сталежелезобетонного сечения с обетонированными ребрами:
 а) эпюра напряжений и схема усилий; б) поперечное сечение составного элемента (иллюстрация автора)
 Figure 4. Design model of steel-reinforced concrete section with concreted ribs:
 a) stress diagram and force diagram; б) cross section of a composite element (illustration by the author)

Для сечения, состоящего из железобетонной плиты и стальных ребер-балок запишем уравнения равновесия (рис 2):

$$N_{x} = \int_{0}^{n_{a}} \sigma_{b} \left(\varepsilon_{b}\right) b_{f} dx + \sigma_{a}^{'} \left(\varepsilon_{a}\right) A_{a}^{'} + \sigma_{a_{1}} \left(\varepsilon_{a}\right) A_{a} + \sigma_{pr}^{'} \left(\varepsilon_{s}\right) A_{pr}^{'} - \sigma_{pr} \left(\varepsilon_{a}\right) A_{pr}$$
(13)

$$M_{z} = N_{bn}Z_{1} + N_{pr}Z_{2} + N_{a}Z_{4} + N_{a}Z_{5} + N_{pr}Z_{3}$$
(14)

Figure 5. Design scheme of steel-reinforced concrete section with steel ribs:

- diagram of initial stresses and diagram of efforts;

- cross section of a composite design element (illustration by the author)

Допуская что в ребрах треугольные эпюры напряжений моментное состояние изгибаемого элемента можно записать в нижеследующем виде, здесь для простоты и наглядности в начальной формуле сечения арматуры в бетонной плите приняты равными нулю.

$$M \le 0.5(\sigma_{b} + \sigma_{b})b_{f}h_{f}\left[x - \frac{h_{f}}{3}\left(\frac{\sigma_{b} + \sigma_{b}}{\sigma_{b} + \sigma_{b}}\right)\right] + \frac{2}{3}\sigma_{s}\left(x - h_{f}\right)^{2} + \frac{2}{3}\sigma_{s}\left[\left(h_{s} + h_{f}\right) - x\right]^{2}$$
(15)

Рассматривая предельное состояние изгибаемого элемента и допуская развитие пластических деформаций в изгибаемом сталежелезобетонном элементе, как в железобетонных изгибаемых элементах с жесткой арматурой, будем иметь расчетную модель с прямоугольной эпюрой напряжений [24].

Уравнение для определения положения границы сжатой зоны

$$R_{b}b_{f}h_{f} + R_{pr}A_{pr} - R_{pr}A_{pr} - 2R_{pr}t_{\omega}(0.5h_{s} - x + h_{f}) = 0$$
(16)

Уравнение моментного состояния с использованием «*W*_{pr}» собственной жесткости двутавра.

$$M \le R_b b_f h_f (x - 0.5h_f) + R_{pr} [W_{pr} + (0.5h_s + h_f - x)^2 t_{\omega}]$$
(17)

Учитывая, что дополнительный момент сопротивления от участка стенки двутавра сравнительно мал, из-за малости толщины стенки « t_{ω} » и расстояния от центра тяжести двутавра до нижней отметки сечения, пренебрегаем его влиянием на общее моментное состояние изгибаемого элемента. Подставляя «*x*» из (6) в (7) и произведя преобразования, получим для искомой ширины «*b_f*» квадратное уравнение. Находя корень квадратного уравнения и учиты-

ТЕОРИЯ БЕТОНА И ЖЕЛЕЗОБЕТОНА

вая, что физически ширина полки «*b_f*» может быть только с положительным знаком, будем иметь [24].

$$b_{f} = \frac{0.5R_{b}h_{f}(h_{f} + h_{s}) \pm \sqrt{0.25R_{b}^{2}h_{f}^{2}(h_{f} + h_{s})^{2} - 4R_{b}^{2}h_{f}^{2}/2R_{pr}h_{\omega}(M - R_{pr}W_{pr})^{'}}{R_{b}^{2}h_{f}^{2}/2R_{pr}t_{\omega}}$$
(18)

где R_b , R_{pr} - предельные значения напряжении, приравненные расчетному сопротивлению бетона и стального профиля;

 h_{f}, h_{s}, t_{o} - геометрические параметры составного сечения;

М-внешний момент от действующих нагрузок.

Сокращая и упрощая повторяющиеся члены

$$b_{f} = \frac{R_{pr}t_{\omega}}{R_{b}h_{f}} (h_{f} + h_{s}) \pm \frac{2R_{pr}t_{\omega}}{R_{b}^{2}h_{f}^{2}} \sqrt{0.25R_{b}^{2}h_{f}^{2}(h_{f} + h_{s})^{2} - 4\frac{R_{b}^{2}h_{f}^{2}}{2R_{pr}h_{\omega}}(M - R_{pr}W_{pr})}$$
(18a)

При учете в работе сталежелезобетонного сечения арматурных сеток в верхней и нижней зонах бетонной плиты эффективную ширину «*b_f*» будем иметь в виде более длинного выражения

$$b_{f} = \frac{0.5R_{b}h_{f}(h_{f} + h_{s}) + \frac{R_{b}h_{f}R_{a}}{2R_{pr}t_{\omega}}(A_{a}^{'} + A_{a}^{'}) \pm \sqrt{[0.5R_{b}h_{f}(h_{f} + h_{s}^{'}) - \frac{R_{b}h_{f}R_{a}}{2R_{pr}t_{\omega}}(A_{a}^{'} + A_{a}^{'})]^{2} - \frac{R_{b}^{2}h_{f}^{2}/2R_{pr}t_{\omega}}{R_{b}^{2}h_{f}^{2}/2R_{pr}t_{\omega}}}$$

$$\frac{-2\frac{R_{b}^{2}h_{f}^{2}}{R_{pr}t_{\omega}}\left[M - R_{pr}W_{pr} + \frac{R_{a}(A_{a} + A_{a}^{'})}{2R_{pr}t_{\omega}} - R_{a}A_{a}^{'}a^{'} + R_{a}A_{a}^{'}(0.5h_{s} + h_{f}^{'}) - R_{a}A_{a}^{'}\frac{R_{a}(A_{a}^{'} + A_{a}^{'})}{2R_{pr}t_{\omega}} + \right]}{(19)}$$

$$+R_{a}A_{a}(a-h_{f})+R_{a}A_{a}(0,5h_{s}+h_{f})-R_{a}^{2}\frac{A_{a}(A_{a}+A_{a})}{2R_{pr}t_{\omega}}$$

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На основе полученных формул по определению эффективной расчетной плиты таврового сечения «*b_f*» проведены численные эксперименты для фрагментов перекрытий (пролет балок G_M – 6м, шаг -3 м, расчетная нагрузка 8 кН/м²). В таблице 1 приведены результаты, полученные по нормативам проектирования и предлагаемой формуле.

Таблица 1

Источник	Расчетная ширина « <i>bp</i> » (см)
СП63.13330.2018	100, 150
EN 1994-1-1-2009	180
Формула	148(118)

Table 1

Reference	Design width « <i>b_j</i> » (cm)
SP 63.13330.2018	100, 150
EN 1994-1-1-2009	180
Formula	148(118)

Таблица 2 отражает результаты расчета для сталежелезобетонного перекрытия. В обоих таблицах по предлагаемым выражениям получены меньше значения ширины полки «*b_f*» (приведены в скобках).

Таблица 2

Источник	Расчетная ширина « <i>b_f</i> » (см)
СП266.1325800.2016	50, 80
EN1994-1-1-2009	≤ 300, 180
Формула	168(136)
Reference	Design width $\langle b_{f} \rangle$ (cm)
SP 266.1325800.2016	50, 80
EN1994-1-1-2009	≤ 300, 180
Formula	168(136)

Table 2

Результаты исследований, аналитические выражения оценки прочности таврового сечения ребристых перекрытий могут быть использованы при возведении ребристых плит и самостоятельных балок таврового сечения новых зданий и восстановлении перекрытий зданий, отслуживших свой нормативных срок.

ЗАКЛЮЧЕНИЕ

1. Анализ нормативных документов, на базе которых проектируются ребристые перекрытия, показал, что в основном для определения эффективной ширины полки сталежелезобетонной балки, изолированной или находящейся в составе перекрытия, используются эмпирические зависимости.

2. Для определения расчетной ширины полки использованы уравнения равновесия внуренних сил и моментного состояния изгибаемого элемента. Такой изгибаемый элемент может применяться как изолированно, так и в составе перекрытия.

3. Рассмотрены наиболее распространенные типы перекрытий в малоэтажных и многоэтажных зданиях: монолитные плиты, возводимые с использованием съемной опалубки и опертые с определенным шагом на железобетонные балки и перекрытия с монолитной плитой, опертой на сталебетонные ребра-балки, деревобетонные перекрытия с деревянными ребрами, бетонные (железобетонные) монолитные плиты по стальным ребрам-балкам.

4. Полученные выражения проверены путем численным расчетов для конкретных геометрических, прочностных параметров использованных материалов реального перекрытия. Например, для сталежелезобетонного перекрытия с бетонной плитой и стальными балками (рис. 4) шагом 3м, пролетом 6м, при нагрузке 800 кг/м² получена расчетная ширина «*b_f*»=168см, а при не учете арматуры в составе бетонной плиты, эффективная ширина уменьшается до 136см.

СПИСОК ЛИТЕРАТУРЫ

1. Кибирева Ю.А., Астафьева Н.С. Применение конструкций из сталежелезобетона // Экология и строительство. 2018. №2. С. 27-34. DOI: 10.24411/2413-8452-2018-10004

2. Colajanni P., Mendola L.L., Monaco A. Review of push-out and shear response of hybrid steel-trussed concrete beams // Buildings. 2018; 8(10):134. DOI: 10.3390/buildings8100134

3. Jurkiewiez B., Braymand S. Experimental study of a pre-cracked steel-concrete composite beam // Journal of Constructional Steel Research. 2007; 63(1):135-144. DOI: 10.1016/j.jcsr.2006.03.013

4. *Тонких Г.П., Чесноков Д.А.* Экспериментальное исследование сдвигового соединения монолитных сталежелезобетонных перекрытий на уголковых анкерных упорах // Вестник МГСУ. 2021. Т. 16. Вып. 2. С. 144–152. DOI: 10.22227/1997-0935.2021.2.144-152

5. Сборно-монолитное перекрытие: пат. 1711032 Рос. Федерация. № 2017101737; заявл. 19.01.17; опубл. 22.05.17, Бюл. № 15

6. Фаттахова А.И. Влияние горизонтальных нагрузок на работу стад-болтов в комбинированных плитах перекрытия // Вестник МГСУ. 2020. Т. 15. № 1. С. 31–42. DOI: 10.22227/1997-0935.2020.1.31-42

7. Ernst S., Bridge R.Q., Wheeler A. Correlation of beam tests with pushout tests in steel-concrete composite beams // Journal of Structural Engineering. 2010. Vol. 136. Issue 2. Pp. 183–192. DOI: 10.1061/ (ASCE)0733-9445(2010)136:2(183)

8.Ling Y., Zheng Z., Yang T.Y., Ma H. Behaviour and modeling of the bearing capacity of shear stud connectors // International Journal of Steel Structures. 2019. Vol. 19(2). Pp. 650–659. DOI: 10.1007/s13296-018-0154-3

9.Qiang X., Chen L., Jiang X. Flexure tests on steel-concrete composite beams strengthened with prestressed CFRP plates by string system // Acta Materiae Compositae Sinica. 2022. 39 (11), pp. 5135-5147. DOI: 10.13801/j.cnki.fhclxb.20220629.004

10. Alsharari, F., El-Sisi, A.E.-D., Mutnbak, M., Salim, H., El-Zohairy, A. Effect of the Progressive Failure of Shear Connectors on the Behavior of Steel-Reinforced Concrete Composite Girders // Buildings. 2022. 12 (5), art. no. 596. DOI: 10.3390/buildings12050596

11. *Liu W., Fang Q., Chen L., Li Z., Zhang Y., Xiang H.* Blast resistance of prestressed steel-grouting composite beams under close-in explosions: Experiment and numerical analysis // Advances in Structural Engineering. 2022. 25 (7). Pp. 1519-1534. DOI: 10.1177/13694332221092676

12. Zabulionis D., Kizinievič O., Feo L. An analysis of the stress–strain state of a timber–concrete *T* cross section // Composites Part B: Engineering. 2012. Vol. 45(1). Pp.148-158. DOI: 10.1016/j.compositesb.2012.09.082

13. *Naud N., Sorell L., Salenikovich A., Cuerrier-Auclair Fostering S.* GLULAM-UHPFRC composite structures for multi-storey buildings // Engineering Structures. 2019. Vol.188(1). Pp. 406-417. DOI: 10.1016/j.engstruct.2019.02.049

14. *Miotto J.L., Dias A.A.* Structural efficiency of full-scale timber–concrete composite beams strengthened with fiberglass reinforced polymer // Composite Structures. 2015. Vol.128(15). Pp. 145-154 DOI: 10.1016/j.compstruct.2015.03.054

15. *Ou Y., Gattas J.M., Fernando D., Torero J.L.* Experimental investigation of a timber-concrete floor panel system with a hybrid glass fibre reinforced polymer-timber corrugated core // Engineering Structures. 2019. Vol.203(15). DOI: 10.1016/j.engstruct.2019.109832

16. *Premrov M., Dobrila P.* Experimental analysis of timber–concrete composite beam strengthened with carbon fibres // Construction and Building Materials. 2012. Vol.37. Pp. 499-506 DOI: 10.1016/j.conbuildmat.2012.08.005

17. Fragiacomo M., Gregori A., Xue J., Demartino C., Toso M. Timber-concrete composite bridges: Three case studies // Journal of Traffic and Transportation Engineering. 2018. Vol.5(6). Pp. 429-438 DOI: 10.1016/j.jtte.2018.09.001

18. Daňková J., Mec P., Šafrata J. Experimental investigation and performance of timber-concrete composite floor structure with non-metallic connection system // Engineering Structures. 2019. Vol.193. Pp. 207-218 DOI: 10.1016/j.engstruct.2019.05.004

19. *Mudie J., Sebastian W.M., Norman J., Bond I.P.* Experimental study of moment sharing in multi-joist timberconcrete composite floors from zero load up to failure //Construction and Building Materials. 2019. Vol.225. Pp. 956-971 DOI: 10.1016/j.conbuildmat.2019.07.137

20. Boccadoro L., Zweidler S., Steiger R., Frangi A. Bending tests on timber-concrete composite members made of beech laminated veneer lumber with notched connection // Engineering Structures. 2017. Vol.132. Pp. 14-28 DOI: 10.1016/j.engstruct.2016.11.029

21. Shi B., Zhu W., Yang H., Liu W., Tao H., Ling Z. Experimental and theoretical investigation of prefabricated timber-concrete composite beams with and without prestress // Engineering Structures. 2020. Vol. 204. 109901 DOI: 10.1016/j.engstruct.2019.109901

22. Крылов С.Б., Семенов В.А., Конин Д.В., Крылов А.С., Рожкова Л.С. О новом руководстве по проектированию сталежелезобетонных конструкций (в развитие СП 266.13330.2016 Конструкции сталежелезобетонные. Правила проектирования) // Асаdemia. Архитектура и строительство. 2019. № 1. С. 99-106. DOI 10.22337/2077-9038-2019-1-99-106

23. Travush V. I., Konin D.V., Krylov A.S. Strength of composite steel and concrete beams of high-performance concrete // Magazine of Civil Engineering. 2018. No. 3 (79). Pp.36-44. doi: 10.18720/MCE.79.4

24. Замалиев Ф.С. Определение эффективной ширины полки балок монолитного сталежелезобетонного перекрытия // Известия КГАСУ, 2019, №4(50)

REFERENCES

1. Kibireva Yu.A., Astafieva N.S. Application of steel-reinforced concrete structures. *Ecology and construction*. 2018. №2. pp. 27-34. DOI: 10.24411/2413-8452-2018-10004

2. Colajanni P., Mendola L.L., Monaco A. Review of push-out and shear response of hybrid steel-trussed concrete beams. *Buildings*. 2018; 8(10):134. DOI: 10.3390/buildings8100134

3. Jurkiewiez B., Braymand S. Experimental study of a pre-cracked steel-concrete composite beam. *Journal of Constructional Steel Research*. 2007. 63(1):135-144. DOI: 10.1016/j.jcsr.2006.03.013

4. Tonkikh G.P., Chesnokov D.A. Experimental study of the shear connection of monolithic steel-reinforced concrete floors on corner anchor stops. *Vestnik MGSU*. 2021. Vol. 16. Issue. 2. Pp. 144–152. DOI: 10.22227/1997-0935.2021.2.144-152

5. Prefabricated-monolithic overlap: Pat. 1711032 Ros. Federation. No. 2017101737; dec. 01/19/17; publ. 05/22/17, Bull. No. 15

6. Fattakhova A.I. Influence of horizontal loads on the operation of stud bolts in combined floor slabs. *Vestnik MGSU*. 2020. V. 15. No. 1. Pp. 31–42. DOI: 10.22227/1997-0935.2020.1.31-42

7. Ernst S., Bridge R.Q., Wheeler A. Correlation of beam tests with pushout tests in steel-concrete compo-site beams. *Journal of Structural Engineering*. 2010 Vol. 136. Issue 2. Pp. 183–192. DOI: 10.1061/(ASCE)0733-9445(2010)136:2(183)

8. Ling Y., Zheng Z., Yang T.Y., Ma H. Behavior and modeling of the bearing capacity of shear stud connectors. *International Journal of Steel Structures*. 2019 Vol. 19(2). pp. 650–659. DOI: 10.1007/s13296-018-0154-3

9. Qiang X., Chen L., Jiang X. Flexure tests on steel-concrete composite beams strengthened with pre-stressed CFRP plates by string system. *Acta Materiae Compositae Sinica*. 2022. 39 (11), pp. 5135-5147. DOI: 10.13801/j.cnki.fhclxb.20220629.004

10. Alsharari, F., El-Sisi, A.E.-D., Mutnbak, M., Salim, H., El-Zohairy, A. Effect of the Progressive Failure of Shear Connectors on the Behavior of Steel-Reinforced Concrete Composite Girders. *Buildings*. 2022. 12 (5), art. no. 596. DOI: 10.3390/buildings12050596

11. Liu W., Fang Q., Chen L., Li Z., Zhang Y., Xiang H. Blast resistance of prestressed steel-grouting compo-site beams under close-in explosions: Experiment and numerical analysis. *Advances in structural engineering*. 2022. 25(7). pp. 1519-1534. DOI: 10.1177/13694332221092676

12. Zabulionis D., Kizinievič O., Feo L. An analysis of the stress-strain state of a timber-concrete T cross section. *Composites Part B: Engineering*. 2012. Vol. 45(1). Pp.148-158. DOI: 10.1016/j.compositesb.2012.09.082

13. Naud N., Sorell L., Salenikovich A., Cuerrier-Auclair Fostering S. GLULAM-UHPFRC composite struc-tures for multi-storey buildings. *Engineering Structures*. 2019. Vol.188(1). pp. 406-417. DOI: 10.1016/j.engstruct.2019.02.049

14. Miotto J.L., Dias A.A. Structural efficiency of full-scale timber–concrete composite beams strengthened with fiberglass reinforced polymer. *Composite Structures*. 2015. Vol.128(15). pp. 145-154 DOI: 10.1016/j.compstruct.2015.03.054

15. Ou Y., Gattas J.M., Fernando D., Torero J.L. Experimental investigation of a timber-concrete floor pan-el system with a hybrid glass fiber reinforced polymer-timber corrugated core. *Engineering Structures*. 2019. Vol.203(15). DOI: 10.1016/j.engstruct.2019.109832

16. Premrov M., Dobrila P. Experimental analysis of timber–concrete composite beam strengthened with carbon fibers. *Construction and Building Materials*. 2012. Vol.37. pp. 499-506 DOI: 10.1016/j.conbuildmat.2012.08.005

17. Fragiacomo M., Gregori A., Xue J., Demartino C., Toso M. Timber-concrete composite bridges: Three case studies. *Journal of Traffic and Transportation Engineering*. 2018. Vol.5(6). pp. 429-438 DOI: 10.1016/j.jtte.2018.09.001

18. Daňková J., Mec P., Šafrata J. Experimental investigation and performance of timber-concrete compo-site floor structure with non-metallic connection system. *Engineering Structures*. 2019. Vol.193. pp. 207-218 DOI: 10.1016/j.engstruct.2019.05.004

19. Mudie J., Sebastian W.M., Norman J., Bond I.P. Experimental study of moment sharing in multi-joist timberconcrete composite floors from zero load up to failure. *Construction and Building Materials*. 2019. Vol.225. pp. 956-971 DOI: 10.1016/j.conbuildmat.2019.07.137

20. Boccadoro L., Zweidler S., Steiger R., Frangi A. Bending tests on timber-concrete composite members made of beech laminated veneer lumber with notched connection. *Engineering Structures*. 2017. Vol.132. pp. 14-28 DOI: 10.1016/j.engstruct.2016.11.029

21. Shi B., Zhu W., Yang H., Liu W., Tao H., Ling Z. Experimental and theoretical investigation of prefabri-cated timber-concrete composite beams with and without prestress. *Engineering Structures*. 2020 Vol. 204.109901 DOI: 10.1016/j.engstruct.2019.109901

22. Krylov S.B., Semenov V.A., Konin D.V., Krylov A.S., Rozhkova L.S. On the new guide for the design of steelreinforced concrete structures (in development of SP 266.13330.2016 Steel-reinforced concrete structures. Design rules). *Academia. Architecture and construction*. 2019. No. 1. S. 99-106. DOI 10.22337/2077-9038-2019-1-99-106

23. Travush V. I., Konin D. V., Krylov A. S. Strength of composite steel and concrete beams of high-performance concrete. *Magazine of Civil Engineering*. 2018 No. 3 (79). Pp.36-44. doi: 10.18720/MCE.79.4

24. Zamaliev F.S. Determination of the effective width of the flange of the beams of a monolithic steel-reinforced concrete floor. *Izvestiya KGASU*. 2019. No. 4 (50).