
 

2025. 4(12). 31–43 

ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ 
 

 

REINFORCED CONCRETE STRUCTURES (ZHELEZOBETONNYYE KONSTRUKTSII) 

ISSN 2949-1622 (PRINT) 
ISSN 2949-1614 (ONLINE) 

HTTPS://G-B-K.RU 

 

ТЕОРИЯ БЕТОНА И ЖЕЛЕЗОБЕТОНА  31 

 

УДК 69.07 

DOI: 10.22227/2949-1622.2025.4.31-43 
 

НАУЧНАЯ СТАТЬЯ/RESEARCH ARTICLE 
 

Несущая способность колонн железобетонных рамных каркасов  

в аварийной ситуации 
 

С.Ю. Савин* 

 

Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 

Москва, Российская Федерация 

* savinsyu@mgsu.ru  
 

 
 

Resistance of Reinforced Concrete Columns in Framed Structures at Accidental 

Design Situation 
 

S.Yu. Savin*
 

 

Moscow State University of Civil Engineering (National Research University) (MGSU), Moscow, Russian Federation 
* savinsyu@mgsu.ru  
 

 

© Савин С.Ю., 2025 

 
This work is licensed under a Creative Commons Attribution 4.0 International License 

https://creativecommons.org/licenses/by/4.0/ 

_________________ 
Сергей Юрьевич Савин, кандидат технических наук, доцент, доцент кафедры железобетонных и каменных конструкций, Национальный 

исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; 

eLIBRARY SPIN-код: 1301-4838, Scopus: 57052453700, ResearcherID: M-8375-2016, ORCID: 0000-0002-6697-3388, E-mail: suwin@yandex.ru 

 

Ключевые слова: живучесть, про-

грессирующее обрушение, железо-

бетон, каркас, колонна, узел 

История статьи 

Поступила в редакцию: 27.11.2025 

Доработана: 02.12.2025 

Принята к публикации: 04.12.2025 

 Аннотация. В процессе эксплуатации конструкции зданий и сооруже-

ний могут подвергаться аварийным воздействиям различного характера, 

создавая риск полного или частичного обрушения объектов строитель-

ства. В данной работе рассматривается напряженно-деформированное 

состояние железобетонных колонн каркасов зданий в аварийной ситуа-

ции. Напряженно-деформированное состояние таких элементов зависит 

от локализации начального разрушения, наличия и жесткости аутригер-

ных конструкций, расположения диафрагм жесткости, стадий работы 

конструкций перекрытий в аварийной ситуации. С использованием 

уровневых моделей получены параметрические точки диаграмм дефор-

мирования железобетонных колонн при различных комбинациях уси-

лий. Эти диаграммы могут быть использованы при задании параметри-

ческих зависимостей для описания работы линейных пластических шар-

ниров в рамках процедуры нелинейного расчетного анализа. 
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 Abstract. During operation, building and structural systems may be sub-

jected to various types of accidental actions, creating a risk of complete or 

partial collapse. This study investigates the stress-strain state of reinforced 

concrete columns in building frames under emergency conditions.  The 

stress-strain state of such elements depends on the localization of the ini-

tial failure, the presence and stiffness of outrigger structures, the location 

of shear walls, and the stages of floor structure behavior in an accidental 

situation. 
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ВВЕДЕНИЕ 

Эксплуатируемые здания и сооружения могут испытывать аварийные воздействия разной 

природы, что создает угрозу их полного или частичного обрушения. При неопределенности 

характеристик исходного воздействия зачастую невозможно или экономически нецелесооб-

разно избежать локальных разрушений элементов конструктивной системы. В этой связи осо-

бую важность приобретает задача недопущения прогрессирующего обрушения всей несущей 

системы, инициированного непредвиденным аварийным событием. В российской [1] и между-

народной практике [2–5] для защиты от подобных сценариев объектов повышенного уровня 

ответственности и зданий с массовым пребыванием людей доминирует проектная стратегия, 

заключающаяся в ограничении распространения разрушений по каркасу после гипотетиче-

ского отказа одного или нескольких ключевых элементов. Данный подход является универ-

сальным относительно типа угрозы, но предполагает назначение начального локального раз-

рушения для последующего анализа устойчивости конструктивной системы к обрушению. 

В данной работе рассматривается напряженно-деформированное состояние железобетон-

ных колонн каркасов зданий в аварийной ситуации. Вертикальные элементы, такие как ко-

лонны и пилоны, являются наиболее ответственными элементами каркасов зданий с точки зре-

ния защиты от прогрессирующего обрушения, поскольку их разрушение связано с высоким 

риском инициации последующей цепочки отказов (непропорционального обрушения). В рабо-

тах Н.Н. Трекина, Э.Н. Кодыша, О.С. Щедрина [6] выполнен анализ ответственности верти-

кальных элементов каркасов. Выводы, полученные в исследовании, позволяют сформулиро-

вать рекомендации для проектирования ключевых элементов. В работах А.Г. Тамразяна, А.В. 

Алексейцева и др. [7–9] приводятся модели и результаты расчета ключевых элементов при 

комбинированных особых воздействиях. В работах В.И. Колчунова и др. [10, 11] приводятся 

расчетные модели вертикальных элементов, испытывающих сложное сопротивление — вне-

центренное сжатие и кручение в аварийной ситуации. Вместе с тем метод проектирования клю-

чевых элементов не во всех случаях позволяет гарантировать защиту зданий и сооружений от 

непропорционального разрушения, особенно при аномальных событиях, не поддающихся про-

гнозированию. 

Напряженно-деформированное состояние вертикальных элементов поврежденной кон-

структивной системы зависит от локализации начального разрушения, наличия и жесткости 

аутригерных конструкций, расположения диафрагм жесткости, стадий работы конструкций пе-

рекрытий в аварийной ситуации. В связи с этим целью исследования является идентификация 

механизмов разрушения колонн железобетонных каркасов зданий в результате аварийной си-

туации и построение расчетных моделей и критериев для оценки их несущей способности. 
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 Using multi-level models, deformation diagrams for reinforced concrete 

columns under various combinations of forces have been obtained. These 

diagrams can be used to define parametric dependencies for special non-

linear two-node finite elements modeling linear plastic hinges. 
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МЕТОД 

Для расчетного анализа поведения железобетонного каркаса здания в аварийной ситуации 

в соответствии с работами [12–14] выделяются следующие взаимосвязанные уровни деформи-

рования (рис. 1). 

Уровень 1 — каркас здания в целом. 

Уровень 2 — фрагмент каркаса в зоне возможного локального разрушения. 

Уровень 3 — элементы в зоне возможного локального разрушения с учетом наложенных 

на них связей, учитывающих взаимодействие и эффективное включение в работу каркаса. 

Уровень 4 — приопорные зоны элементов и конструктивные узлы, приобретающие в ава-

рийной ситуации повышенную деформативность и конструктивную нелинейность. 

Уровневый анализ деформирования железобетонных рамных каркасов зданий в запредель-

ных состояниях, возникающих в результате аварийной ситуации, позволяет обеспечить раци-

ональное проектирование защиты от прогрессирующего обрушения за счет учета резервов гло-

бального сопротивления конструктивной системы. 

 

 
 

Рис. 1. Связь уровней деформирования и системы критериев 

Fig. 1. Relationship of deformation levels to the system of criteria 

 

На первом уровне (рис. 2, а) определяются параметры взаимодействия фрагмента кон-

структивной системы (рис. 2, b) в зоне возможно локального разрушения [12] с остальной ча-

стью каркаса здания. В рамках расчетной модели второго уровня рассматривается поведение 

конструкций (рис. 2, c) с учетом специфических стадий напряженно-деформированного состо-

яния, в то время как для остальной части каркаса взаимодействия рассматриваются в предпо-

ложении условно нелинейной работы элементов и узлов (назначаются эффективные пара-

метры жесткости в рамках линейной процедуры расчетного анализа), либо принимаются та-

кими же как для элементов расчетной схемы второго уровня. Элементы, обеспечивающие про-

странственную жесткость, такие как диафрагмы жесткости, как правило не входят в расчетную 
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модель второго уровня, однако учитываются опосредованно через наложение системы связей 

на фрагмент конструктивной системы [15]. При выполнении численного моделирования по 

МКЭ оценка несущей способности таких плоскостных элементов требует использования обоб-

щенных деформационных или силовых критериев, т.е. по сути рассмотрения задачи на двух 

уровнях: на уровне отдельного конечного элемента и его разрушения; на уровне конструкции 

и потери ее несущей способности. В качестве варианта такого критерия в работе [16] рассмот-

рено использование коэффициента допустимых повреждений, определяемого через коэффици-

ент пластичности по деформациям. В случае применения процедуры нелинейного анализа мо-

гут быть также использованы критерии технического состояния железобетонных конструкций 

(угол поворота, перекос, силовые факторы), представленные в FEMA 356 [17] применительно 

к столбам диафрагм и их сегментам, подверженным изгибу в своей плоскости или перекосу 

при действии сдвигающих сил. 

 

  
а b 

  

c d 
 

Рис. 2. Многоуровневый анализ деформирования железобетонных рамных каркасов зданий в авариной ситуа-

ции: а — примеры расчетных схем первого уровня; b — расчетные схемы второго уровня; c — расчетные схемы 

третьего уровня; d — расчетные схемы четвертого уровня 

Fig. 2. Multilevel analysis of reinforced concrete building frame deformation in an emergency scenario: а — examples 

of first-level computational models; b — second-level computational models; c — third-level computational models;  

d — fourth-level computational models 

 

Анализ поведения конструкций в условиях, выходящих за пределы нормальной эксплуа-

тации, требует выхода за рамки традиционных расчетных моделей. Стандартные подходы, ос-

нованные на гипотезах о работе сечений в нормальных условиях, становятся неприменимыми, 

поскольку нарушаются их ключевые предпосылки. В этих состояниях для гарантии несущей 

способности необходимо учитывать комплекс явлений: формирование односторонних связей 
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(конструктивная нелинейность), значительные перемещения (геометрическая нелинейность), 

а также отказ от гипотезы плоских сечений из-за развития трещин и перехода материалов в 

пластическую стадию работы (физическая нелинейность). Учет этих факторов обосновывает 

введение в анализ дополнительного иерархического уровня, описывающего деформирование 

критического сечения элемента или, в случае работы железобетона с трещинами, — участка 

элемента с трещинами. 

Согласно данным теоретических и экспериментальных исследований [18, 19], такой уро-

вень включает узлы рам и примыкающие к ним зоны ригелей и колонн (рис. 2, d). Однако в 

указанных работах были недостаточно изучены особенности деформирования в запредельных 

состояниях — диапазоне работы конструктивной системы после превышения критериев пер-

вой группы предельных состояний. Этот диапазон может включать несколько дополнительных 

стадий работы конструкций (арочный эффект, работа по типу висячей системы). Термин «осо-

бое предельное состояние» (как и другие группы предельных состояний) предполагает некото-

рое фиксированное состояние конструкций, после превышения которого они перестают удо-

влетворять установленным требованиям. Таким образом, запредельное состояние можно опре-

делить как диапазон работы конструкций от достижения предельного состояния первой 

группы для элемента или группы элементов до достижения особого предельного состояния. 

В рамках построения расчетных моделей четвертого уровня введем ряд рабочих предпо-

сылок: 

 диаграмма работы сжатого бетона в общем случае описывается полиномиальной 

зависимостью, позволяющей с достаточной точностью описать поведение как на 

восходящей, так и нисходящей ветви деформирования. Однако в данной работе для 

получения более наглядных аналитических зависимостей применительно к внецен-

тренно сжатым элементам использована билинейная равновесная диаграмма, кото-

рая менее точна при оценке деформированного состояния; 

 работа растянутого бетона на участке с трещинами не учитывается в запас несущей 

способности; 

 в запредельном состоянии отклонение колонны от вертикального положения под 

действием нагрузки определяется углом поворота в линейном пластическом шар-

нире. Для описания поведения линейного пластического шарнира используются за-

висимости между проскальзыванием арматуры и напряжениями в ней согласно 

Model Code 2010 [20]; 

 для сцепления арматуры с бетоном в пределах длины пластического шарнира при-

нимается осредненное значение bm,pl = 0,27 b,max согласно Model Code 2010 [20]; 

 гипотеза плоских сечений соблюдается по границам участка передачи усилий с ар-

матуры на бетон, а внутри этого участка, в том числе в пределах длины пластиче-

ского шарнира, соблюдается для средних значений относительных деформаций в 

сжатом бетоне и растянутой арматуре. 

 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 

Работа колонн как растянутых элементов 

При наличии в каркасе здания аутригерных конструкций в железобетонных колоннах, рас-

положенных непосредственно над местом начального локального разрушения, практически на 
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всю высоту здания или в пределах блока, ограниченного по высоте здания аутригерами, воз-

никнут растягивающие продольные силы. До образования трещин в колонне ее можно рас-

сматривать как абсолютно жесткое тело в направлении продольной оси. После того как нару-

шится условие: 

N ≤ Ncrc,      (1) 

в колонне образуются трещины, и ее напряженно-деформированное состояние и разрушение 

будут определяться сцеплением арматуры с бетоном на участке с трещинами. При этом в раз-

личных бетонах (обычные, высокопрочные, легкие, дисперсно-армированные), как было отме-

чено в работе [21], в процессе деформирования может образоваться как сеть нерегулярных тре-

щин, так и единичная критическая трещина. Это существенно влияет на деформирование и 

разрушение растянутых, изгибаемых и внецентренно сжатых элементов и должно учитываться 

в их расчете. Образование единичной трещины в высокопрочных бетонах сопряжено с высво-

бождением усилий, которые в некоторых случаях не могут быть перераспределены и уравно-

вешены усилиями в бетоне. В результате образовавшаяся трещина может стать сквозной и при-

вести к потере несущей способности элемента. 

Возникающие в результате образования трещин динамические эффекты могут быть оце-

нены с использованием кусочно-линейной зависимости между продольным усилием и удлине-

нием для монотонного квазистатического нагружения из положений энергетического баланса. 

Для случая Ny < N ≤ Nu соотношения энергетического баланса для максимального динамиче-

ского раскрытия трещины примут вид: 

   , ,0 , ,0 , , .
2 2 2

crc y y dcrc
st crc d crc crc y crc crc d crc y

N N N NN
N w w w w w w

 
       (2) 

Отсюда, полагая растяжимость элемента до образования трещин равной нулю: wcrc,0 = 0, полу-

чим выражение для динамической продольной силы: 

 ,

, ,

2 , ;

1
2 , ,

1 1

st crc d y

pl crcd

st y crc y d y

pl crc pl crc

N N если N N

kN
N N N N если N N

k k

 


 
     

  (3) 

где kpl,crc — коэффициент пластичности [16], определяемый в формуле (3) относительно сум-

марной ширины раскрытия трещин или, иными словами, — удлинения элемента при растяже-

нии: 

,

,

,

.
crc d

pl crc

crc y

w
k

w
        (4) 

В формуле (3) wcrc,d — суммарная ширина раскрытия трещин или ширина раскрытия единич-

ной трещины при текущем уровне динамической продольной силы; wcrc,y — суммарная ширина 

раскрытия трещин при напряжениях в продольной рабочей арматуре элемента σs = Rsn. Следует 

заметить, что в выражениях (2) в запас несущей способности считается, что до достижения 

текучести в арматуре элемент с трещинами демонстрирует линейную зависимость между уси-

лиями и деформациями, что в общем случае не так. Для оценки эффектов рассеивания энергии 

на этапе деформирования при Ncrc ≤ N ≤ Ny необходимо учитывать нелинейную зависимость 
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между напряжениями или соответствующими относительными деформациями в арматурном 

стержне и шириной раскрытия трещин, например, согласно зависимостям Model Code [20], 

рассмотренным в работе [22]. 

Чтобы получить аналитические зависимости для параметрических точек кусочно-линей-

ной диаграммы воспользуемся моделями железобетонных элементов с трещинами, представ-

ленными в работах Вл.И. Колчунова [18, 19, 21] и в Model Code [20]. Запишем выражения для 

параметрических точек диаграммы деформирования в координатах «продольная сила – сум-

марная ширина раскрытия трещин»: 

 

 до образования трещин, т.е. wcrc,0 = 0: 

N = Ncrc = Rbtn(A+2αAs,tot);     (5) 

 в конце упругой стадии работы арматуры: 

N = Ny = RsnAs,tot;          (6) 
0,714

2

,

,max

0,576 4 ;
τ

s s s
crc y s

b s s

d R R
w d

E E

 
   

 

           (7) 

 в момент разрыва арматуры: 

N = Nu = RsunAs,tot;      (8) 
0,714

2

,

, ,max

ε
0,576 4 .

τ 4 τ

su s s su s s s
crc u s

bm pl b s s

R R d d R R
w d

E E

 
    

 

   (9) 

Представленные аналитические зависимости позволяют оценить предельную эксплуата-

ционную статическую нагрузку, которая может быть воспринята элементом при внезапных 

структурных изменениях, сопровождающихся приложением динамической растягивающей 

нагрузки: 

, ,

,

, , , ,

11
,

2 2

y crc u y pl crc u

st u

pl crc u pl crc u

N N N N k
N

k k

  
      (10) 

где kpl,crc,u — предельное значение коэффициента пластичности для рассматриваемого железо-

бетонного элемента при условно центральном растяжении: 

,

, ,

,

.
crc u

pl crc u

crc y

w
k

w
      (11) 

Динамическая ширина раскрытия трещины может быть определена интерполяцией между 

значениями, вычисленными по формулам (7), (9), в зависимости от величины действующего 

усилия N. 

Помимо проверки усилий в арматурных стержнях в трещине следует также проверить 

условие обеспечения анкеровки растянутой арматуры в соответствии с СП 63.13330 [23] с уче-

том наличия ее соединений внутри рассматриваемого элемента и по высоте каркаса. При этом 

к длине анкеровки по СП 63.13330 [23] добавляется длина участка, на котором арматура рабо-

тает в пластической стадии: 
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,

.
τ 4

su sn s
pl

bm pl

R R d
L


      (12) 

Для учета влияния деформирования растянутых элементов с трещинами на смежные ко-

лонны и ригели ниже расположенных этажей может быть использована секущая жесткость, 

определяемая по кусочно-линейной диаграмме, описываемой выражениями (5)–(9). В случае 

необходимости определения интегральной жесткости нескольких последовательно соединен-

ных элементов по высоте каркаса необходимо сложить податливости растянутых элементов с 

трещинами. При этом жесткости раскрепляющих из плоскости элементов (например, ригелей) 

необходимо суммировать с секущей жесткостью колонны в пределах одного этажа. 

 

Работа колонн при внецентренном сжатии 

Определим характерные точки диаграммы «момент – угол поворота в пластическом шар-

нире» для внецентренно сжатых элементов в зоне возможного локального разрушения с тем, 

чтобы получить параметрические зависимости для назначения жесткостей специальным ко-

нечным элементам нелинейно упругих связей или использовать их непосредственно в расчете 

конструкций. Здесь следует иметь в виду, что если продольная сила выше некоторого значения 

(случаи малых эксцентриситетов), то в предельном состоянии происходит хрупкое разрушение 

элемента без образования пластического шарнира. Рассмотрим внецентренно сжатую железо-

бетонную колонну (рис. 3). 

 

 
а             b    c 

Рис. 3. Деформированное состояние внецентренно сжатого элемента (колонны) с трещинами в растянутой зоне: 

а — общий вид; b — расчетная схема с учетом линейного пластического шарнира; c — расчетная схема с уче-

том дискретных поворотов в сечениях с трещинами 

Fig. 3. Deformed state of an eccentrically compressed element (column) with cracks in the tension zone: a — general 

view; b — computational model considering a linear plastic hinge; c — computational model considering discrete rota-

tions in cracked sections 

 

Непосредственно перед образованием нормальной трещины в опорном сечении колонны 

изгибающий момент и угол поворота на участке длиной Lpl: 

Mcrc = RbtnWpl ± Ne;      (13) 



Савин С.Ю. Железобетонные конструкции. 2025. Т. 12. № 4. С. 31–43 
 

 

ТЕОРИЯ БЕТОНА И ЖЕЛЕЗОБЕТОНА  39 

 

0

,

plL

crc

red

M x
dx

EI
         (14) 

где Rbtn — нормативное сопротивление бетона одноосному растяжению; 

Wpl — упругопластический момент сопротивления сечения; 

N — продольная сила в ригеле, принимаемая со знаком «+» при сжатии и со знаком «–» 

при растяжении; 

e — расстояние от центра тяжести сечения до наиболее удаленной ядровой точки; 

Lpl — предельная длина пластического шарнира, определяемая из условия: 

,

,
τ 4

s sn s
pl

bm pl

R d
L

 
       (15) 

где σs > Rsn — напряжения в растянутой арматуре, соответствующие несущей способности эле-

мента при заданной величине продольной силы. 

Зависимости (13), (14) соответствуют практически упругой работе железобетонной ко-

лонны. Так же, как и в расчете ригелей [14] использование здесь предельной длины линейного 

пластического шарнира при заданной величине продольной силы позволяет получить парамет-

рическую зависимость для стадий работы элемента до его разрушения без необходимости кор-

ректировки длины пластического шарнира с учетом ее фактического изменения в запредель-

ном состоянии по мере изменения изгибающего момента. 

В момент достижения текучести в растянутой арматуре колонны на приопорном участке 

получим: 
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0

0

1 1 1 2
1 1

2 2 3

1 ;
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y b
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    (16) 

1
.y pl

crc

L
r

 
   

 
      (17) 

В формуле (16) приняты следующие обозначения: 

σb = εbEb,red,      (18) 

,

,s

b red

E

E
        (19) 

,

1 ,b

b red


  


      (20) 

0

1sc b

a

h

 
     

 
.      (21) 

Остальные обозначения соответствуют общепринятым по СП 63.13330 [23]. 

Относительная высота сжатой зоны ξ здесь определяется в предположении о трапециевид-

ном профиле эпюры напряжений в сжатом бетоне. В частном случае такая эпюра напряжений 

сводится к треугольной, обеспечивая единообразие полученной зависимости для различных 

стадий напряженно-деформированного состояния. С учетом гипотезы плоских сечений для 

средних относительных деформаций на участке с трещинами, в том числе в пределах линей-

ного пластического шарнира (при наличии): 
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ε 1
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Отсюда с учетом (17) получим: 
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crc m
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w
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     (23) 

где wcrc определяется из зависимостей, приведенных в работе [14]. 

Относительную высоту сжатой зоны найдем из решения уравнения, подставляя (23): 

0

0

1
1 0,

2
b b s s s

a
bh A A N
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Кривизна 
1

crcr

 
 
 

 в формуле (17) по длине линейного пластического шарнира Lpl принята 

постоянной. Она определяется по средним относительным деформациям в сжатом бетоне и 

растянутой арматуре на участке между соседними трещинами (или передаче усилий с арма-

туры на бетон при единичных трещинах): 

0 0 , 0

0,8 0,9ε ε1
.

y crc ysm bm

crc s s s b red b s

M M M

r h E A z h E A z h

 
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 
   (25) 

где zs, Ab — плечо внутренней пары сил и площадь сжатого бетона, определяемые из расчета 

по предельным усилиям. 

Предельное значение изгибающего момента при пластической стадии работы арматуры 

определяется из формулы (16) при σs > Rsn. Предельный угол поворота определим из выраже-

ния: 
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,
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,
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crc u

u crc u

w
w

h x
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  

 
     (26) 

где wcrc,u определяется из формулы (9) с учетом замены Rsu на σs. 

Динамические эффекты, вызванные внезапным приложением нагрузки (например, при пе-

реходе конструкций перекрытий к сопротивлению по типу висячей системы), могут быть оце-

нены с использованием кусочно-линейной зависимости между изгибающим моментом и углом 

поворота в пластическом шарнире (или средней кривизной по длине пластического шарнира) 

из положений энергетического баланса: 
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 (27) 

где kpl,φ, kpl,φ,crc — коэффициенты пластичности при текущем уровне нагрузки и при нагрузке, 

вызывающей образование трещин: 
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y y
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     (28) 
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Для коротких колонн при больших эксцентриситетах нагрузки необходимо выполнять 

проверку прочности при действии поперечных сил в соответствии с требованиями СП 63.13330 

[23]. 

 

ЗАКЛЮЧЕНИЕ 

1. Предложена иерархия расчетных моделей для анализа глобального сопротивления же-

лезобетонных каркасов зданий в аварийной ситуации, вызванной начальным локальным раз-

рушением. Рассмотрены механизмы разрушения колонн при действии растягивающей про-

дольной силы и при внецентренном сжатии. 

2. С использованием уровневых моделей получены параметрические точки диаграмм де-

формирования железобетонных колонн при различных комбинациях усилий. Эти диаграммы 

могут быть использованы при задании параметрических зависимостей для описания работы 

линейных пластических шарниров в рамках процедуры нелинейного расчетного анализа. 

3. На основе параметрических точек диаграмм деформирования железобетонных колонн 

при растяжении и внецентренном сжатии получены выражения для динамической продольной 

силы и изгибающего момента, связанные со значениями этих усилий от действия статической 

нагрузки во вторичной расчетной схеме поврежденной конструктивной системы. 

4. Полученные результаты могут быть использованы в практических расчетах при проек-

тировании железобетонных рамных каркасов для подбора и обоснования конструктивных ре-

шений, обеспечивающих живучесть зданий при аварийных воздействиях. 
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