Effective Width of the T-section Flange of Ribbed Slabs
https://doi.org/10.22227/2949-1622.2023.2.22-31
Abstract
Ribbed ceilings in reinforced concrete, and more recently in steel-reinforced concrete and wood-concrete versions, occupy a significant place in the total volume of buildings and structures. An analysis of the regulatory and technical literature shows that in domestic and foreign sources, empirical dependencies are proposed for assigning the effective width of a T-section flange, which does not lead to economical and reliable design solutions.
The purpose of the study is to determine the calculated effective width of a flange of a tee monolithic section or a composite section of a floor. Based on the analysis of the stress-strain state of a bent tee section, analytical ex-pressions are written and formulas are obtained for determining the design flange width.
About the Author
F. S. ZamalievRussian Federation
Farit S. Zamaliev, Candidate of Technical Sciences, Associate Professor, Associate Professor of the Kazan State University of Architecture and Engineering, (KGASU)
Scopus: 57208104857
1 Zelenaya st., Kazan, 420043
References
1. Kibireva Yu.A., Astafieva N.S. Application of steel-reinforced concrete structures. Ecology and construction. 2018. No2. pp. 27-34. DOI: 10.24411/2413-8452-2018-10004
2. Colajanni P., Mendola L.L., Monaco A. Review of push-out and shear response of hybrid steel-trussed concrete beams. Buildings. 2018; 8(10):134. DOI: 10.3390/buildings8100134
3. Jurkiewiez B., Braymand S. Experimental study of a pre-cracked steel-concrete composite beam. Journal of Constructional Steel Research. 2007. 63(1):135-144. DOI: 10.1016/j.jcsr.2006.03.013
4. Tonkikh G.P., Chesnokov D.A. Experimental study of the shear connection of monolithic steel-reinforced concrete floors on corner anchor stops. Vestnik MGSU. 2021. Vol. 16. Issue. 2. Pp. 144–152. DOI: 10.22227/1997-0935.2021.2.144-152
5. Prefabricated-monolithic overlap: Pat. 1711032 Ros. Federation. No. 2017101737; dec. 01/19/17; publ. 05/22/17, Bull. No. 15
6. Fattakhova A.I. Influence of horizontal loads on the operation of stud bolts in combined floor slabs. Vestnik MGSU. 2020. V. 15. No. 1. Pp. 31–42. DOI: 10.22227/1997-0935.2020.1.31-42
7. Ernst S., Bridge R.Q., Wheeler A. Correlation of beam tests with pushout tests in steel-concrete compo-site beams. Journal of Structural Engineering. 2010 Vol. 136. Issue 2. Pp. 183–192. DOI: 10.1061/(ASCE)0733-9445(2010)136:2(183)
8. Ling Y., Zheng Z., Yang T.Y., Ma H. Behavior and modeling of the bearing capacity of shear stud connectors. International Journal of Steel Structures. 2019 Vol. 19(2). pp. 650–659. DOI: 10.1007/s13296-018-0154-3
9. Qiang X., Chen L., Jiang X. Flexure tests on steel-concrete composite beams strengthened with pre-stressed CFRP plates by string system. Acta Materiae Compositae Sinica. 2022. 39 (11), pp. 5135-5147. DOI: 10.13801/j.cnki.fhclxb.20220629.004
10. Alsharari, F., El-Sisi, A.E.-D., Mutnbak, M., Salim, H., El-Zohairy, A. Effect of the Progressive Failure of Shear Connectors on the Behavior of Steel-Reinforced Concrete Composite Girders. Buildings. 2022. 12 (5), art. no. 596. DOI: 10.3390/buildings12050596
11. Liu W., Fang Q., Chen L., Li Z., Zhang Y., Xiang H. Blast resistance of prestressed steel-grouting compo-site beams under close-in explosions: Experiment and numerical analysis. Advances in structural engineering. 2022. 25(7). pp. 1519-1534. DOI: 10.1177/13694332221092676
12. Zabulionis D., Kizinievič O., Feo L. An analysis of the stress–strain state of a timber–concrete T cross section. Composites Part B: Engineering. 2012. Vol. 45(1). Pp.148-158. DOI: 10.1016/j.compositesb.2012.09.082
13. Naud N., Sorell L., Salenikovich A., Cuerrier-Auclair Fostering S. GLULAM-UHPFRC composite struc-tures for multi-storey buildings. Engineering Structures. 2019. Vol.188(1). pp. 406-417. DOI: 10.1016/j.engstruct.2019.02.049
14. Miotto J.L., Dias A.A. Structural efficiency of full-scale timber–concrete composite beams strengthened with fiberglass reinforced polymer. Composite Structures. 2015. Vol.128(15). pp. 145-154 DOI: 10.1016/j.compstruct.2015.03.054
15. Ou Y., Gattas J.M., Fernando D., Torero J.L. Experimental investigation of a timber-concrete floor pan-el sys-tem with a hybrid glass fiber reinforced polymer-timber corrugated core. Engineering Structures. 2019. Vol.203(15). DOI: 10.1016/j.engstruct.2019.109832
16. Premrov M., Dobrila P. Experimental analysis of timber–concrete composite beam strengthened with carbon fibers. Construction and Building Materials. 2012. Vol.37. pp. 499-506 DOI: 10.1016/j.conbuildmat.2012.08.005
17. Fragiacomo M., Gregori A., Xue J., Demartino C., Toso M. Timber-concrete composite bridges: Three case studies. Journal of Traffic and Transportation Engineering. 2018. Vol.5(6). pp. 429-438 DOI: 10.1016/j.jtte.2018.09.001
18. Daňková J., Mec P., Šafrata J. Experimental investigation and performance of timber-concrete compo-site floor structure with non-metallic connection system. Engineering Structures. 2019. Vol.193. pp. 207-218 DOI: 10.1016/j.engstruct.2019.05.004
19. Mudie J., Sebastian W.M., Norman J., Bond I.P. Experimental study of moment sharing in multi-joist timber-concrete composite floors from zero load up to failure. Construction and Building Materials. 2019. Vol.225. pp. 956-971 DOI: 10.1016/j.conbuildmat.2019.07.137
20. Boccadoro L., Zweidler S., Steiger R., Frangi A. Bending tests on timber-concrete composite members made of beech laminated veneer lumber with notched connection. Engineering Structures. 2017. Vol.132. pp. 14-28 DOI: 10.1016/j.engstruct.2016.11.029
21. Shi B., Zhu W., Yang H., Liu W., Tao H., Ling Z. Experimental and theoretical investigation of prefabri-cated timber-concrete composite beams with and without prestress. Engineering Structures. 2020 Vol. 204.109901 DOI: 10.1016/j.engstruct.2019.109901
22. Krylov S.B., Semenov V.A., Konin D.V., Krylov A.S., Rozhkova L.S. On the new guide for the design of steel-reinforced concrete structures (in development of SP 266.13330.2016 Steel-reinforced concrete structures. Design rules). Academia. Architecture and construction. 2019. No. 1. S. 99-106. DOI 10.22337/2077-9038-2019-1-99-106
23. Travush V. I., Konin D. V., Krylov A. S. Strength of composite steel and concrete beams of high-performance concrete. Magazine of Civil Engineering. 2018 No. 3 (79). Pp.36-44. doi: 10.18720/MCE.79.4
24. Zamaliev F.S. Determination of the effective width of the flange of the beams of a monolithic steel-reinforced concrete floor. Izvestiya KGASU. 2019. No. 4 (50).
Review
For citations:
Zamaliev F.S. Effective Width of the T-section Flange of Ribbed Slabs. Reinforced concrete structures. 2023;2(2):22-31. (In Russ.) https://doi.org/10.22227/2949-1622.2023.2.22-31