Preview

Reinforced concrete structures

Advanced search

Selection of Transverse Bars in Reinforced Concrete Beams while Ensuring the Minimum Consumption of Reinforcement

Abstract

The paper considers the influence of various factors on the consumption of transverse reinforcement in the design of sections of linear bending reinforced concrete elements. The aim of the work is to determine the degree of influence of the pitch, diameter and class of transverse rods, as well as other factors, on the minimum consumption of clamps at various levels of loading of a linear bending element. The calculation and analytical method of research was used, based on the results of applying various diameters of transverse rods, reinforcement classes. The object of the study was a beam of rectangular cross section, in which the step of the clamps varied from the minimum to the maximum allowable standards, with a stepwise changing load. Research results. It has been established that the optimal longitudinal single reinforcement of the beam is achieved by applying a maximum force of 255 kN from the studied load range. When a concentrated force of less than 125 kN is applied to the beam, the transverse reinforcement is installed according to the design requirements. The most economical solution for reinforcing a beam with transverse bars is achieved with class A240 and a step of 0.235 m and 0.140 m, with an overrun of 0% and 6.9%, respectively. The use of transverse bars made of A500C class reinforcement, with the accepted beam parameters of 0.3×0.5 m, with single reinforcement, with the application of a force of 255 kN, is not advisable, since the assortment of reinforcing steels does not provide for diameters less than 10 mm. The dependencies and the levels of influence of the use of different pitches, diameters and classes of transverse rods, with a stepwise changing load, on the minimum consumption of transverse reinforcement in the design section of the beam are established. The presented work specifies the consumption of transverse reinforcement for its most economical use.

About the Authors

Yu. A. Shaposhnikova
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation

Yulia A. Shaposhnikova, Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Reinforced Concrete and Masonry Structures

Scopus: 57190858958, ResearcherID: P-8986-2018

26 Yaroslavskoe shosse, Moscow, 129337



V. S. Kuznetsov

Russian Federation

Vitaly S. Kuznetsov, Candidate of Technical Sciences, Professor, free researcher

Scopus: 57199931676, ResearcherID: P-8993-2018Moscow



References

1. Tamrazyan А.G., Alekseytsev A.V. Optimization of reinforced concrete beams under local mechanical and corrosive damage // Engineering Optimization. 2022. doi.org/10.1080/0305215X.2022.2134356

2. Chakrabarty B.K. Models for optimal design of reinforced concrete beams // Journal of Structural Engineering. 1992. Vol. 118. No. 11. doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3238)

3. Coello C.C., Hernandez F.S. and Farrera F.A. Optimal design of reinforced concrete beams using genetic algorithms // Journal of Intelligent Learning Systems and Applications. 2014. Vol. 6. No. 4. doi.org/10.1016/S0957-4174(96)00084-X

4. Garstecki A., Glema A., Ścigałło J. Optimal design of reinforced concrete beams and frames // Computer Assisted Mechanics and Eng. Sciences. 1996. No. 3 (3). Pp. 223-231.

5. Demby M., Ścigałło J. Design aspects of the safe structuring of reinforcement in reinforced concrete bending beams // Modern building materials, structures and techniques, MBMST 2016. Procedia Engineering 172. 2017. Pp. 211-217. doi: 10.1016/j.proeng.2017.02.051

6. Kuznetsov V.S., Shaposhnikova Y.A., Yandiev A.A. Selection of the optimal parameters of a reinforced concrete rectangular beam with single reinforcement // IOP Conference Series: Materials Science and Engineering. 2020. No. 962 (2): 022055. doi: 10.1088/1757-899X/962/2/022055

7. Балакай А.А., Цыганов М.В., Алейник Д.В., Дмитренко Е.А. Зависимость несущей способности наклонных сечений на действие поперечной силы от изменения длины проекции наклонного сечения // Вестник Донбасской национальной академии строительства и архитектуры. 2020. No 4 (144). С. 50-55.

8. Филатов В.Б., Арцыбасов А.С., Багаутдинов М.А., Гордеев Д.И., Кортунов А.И., Никитин Р.А. Анализ расчетных моделей при расчете прочности наклонных сечений железобетонных балок на действие поперечных сил // Известия Самарского научного центра Российской академии наук. 2014. Том 16, No 4-3. С. 642-645.

9. Jensen B.C. and Łapko A. On shear reinforcement design of structural concrete beams on the basis of theory of plasticity // Journal of Civil Engineering and Management. 2009. No. 15 (4). Рp. 395-403. doi.org/10.3846/1392-3730.2009.15.395-403

10. Minelli F. and Plizzari G.A. Shear design of FRC members with little or no conventional shear reinforcement //Ailor Made Concrete Structures – Walraven & Stoelhorst (eds). 2008. doi: 10.1201/9781439828410.ch100

11. Снежкина О.В., Егинов Э.В., Ладин Р.А. Оценка влияния вертикальных хомутов на прочность железобетонных балок при действии поперечных сил // Региональная архитектура и строительство. 2014. No3. С. 57-61.

12. Силантьев А.С., Лучкин Е.А. Работа изгибаемых элементов по наклонным сечениям с экстремально малым пролетом среза // Бетон и железобетон. 2020. No 2 (602). С. 28-33.

13. Тихонов И.Н., Саврасов И.П. Исследование прочности железобетонных балок с арматурой класса А500 при действии поперечных сил // Жилищное строительство. 2010. No 9. С. 32-37.

14. Campione G., Monaco A., Minafò G. Shear strength of high-strength concrete beams: Modeling and design recommendations // Engineering Structures. 2014. No. 69 (9). Pp. 116-122. doi: 10.1016/j.engstruct.2014.02.029

15. Кузнецов B.C., Прокуронова Е.А. Геометрические допуски как факторы риска снижения долговечности железобетонных элементов // Строительные материалы, оборудование, технологии XXI века. 2006. No7 (90). С. 22-23.

16. Кузнецов B.C., Кузнецов A.B., Смирнов М.Н. Нормативные допуски как факторы риска снижения долговечности строительных объектов // Строительные материалы, оборудование, технологии XXI века. 2005. No5 (76). С. 80-81.

17. Merta I., Kolbitsch A., Kravanja S. Cost optimization of reinforced concrete beams // Conference: Sixth International Conference Concrete under Severe Conditions Environment & Loading. At: Mérida. Yucatán. México. 2010. [Online]. URL: researchgate.net/publication/282132306_Cost_Optimization_of_Reinforced_Concrete_Beams (date of application: 05.01.2023).

18. Kuznetsov V., Shaposhnikova Y. The cost of flexible elements of a rectangular profile // XIV International Scientific Conference «INTERAGROMASH 2021». Lecture Notes in Networks and Systems. 2022. Vol. 247. Pp. 33–40. doi: 10.1007/978-3-030-80946-1_4

19. Kuznetsov V.S., Shaposhnikova Y.A. The structure of the content and cost of materials in bending reinforced concrete element with variable section height // Lecture Notes in Civil Engineering. 2021. Vol. 151. Pp. 181–187. doi: 10.1007/978-3-030-72910-3_26

20. Сутягин А.Е. Практический способ расчёта поперечной арматуры в балках // Наука и безопасность. 2012. No 4. С. 65-69.

21. Корчагин О.П., Зонина С.В. О специфике расчётов изгибаемых железобетонных конструкций по наклонным сечениям // Социально-экономические и технические системы: исследование, проектирование, оптимизация. 2018. No 1 (77). С. 12-20.


Review

For citations:


Shaposhnikova Yu.A., Kuznetsov V.S. Selection of Transverse Bars in Reinforced Concrete Beams while Ensuring the Minimum Consumption of Reinforcement. Reinforced concrete structures. 2023;2(2):65-76. (In Russ.)

Views: 275


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1622 (Print)
ISSN 2949-1614 (Online)