Deformation of Early Freezing Concrete in the Assessment Stress-Strain State of Reinforced Concrete Structures
https://doi.org/10.22227/2949-1622.2024.4.44-53
Abstract
When performing concreting works for structures in sub-zero temperatures, a situation often arises in which the technology of heating the concrete mix during its setting and hardening is violated. It is customary to specify in the project the minimum (critical) strength of concrete before its freezing to ensure the strength gain to the brand indicators. Low strength of concrete at the time of freezing is the basis for dismantling the structure or reinforcing it. As a result — a decrease in the profitability of construction and an increase in the terms of production works. The paper presents a technique for constructing a deformation diagram of concrete samples after early freezing of the concrete mix in order to use it to assess the stress-strain state of structures with low strength. To assess the effect of early freezing times on the final strength of concrete and to plot deformation curves, compression tests were carried out on cube samples with an edge of 100 mm with different periods of curing of concrete before its freezing. A technique is presented for taking into account the obtained deformation curves for assessing the stress-strain state of structures based on a nonlinear deformation model. Initial information has been prepared for developing a program for calculating the SSS using the obtained methodology. The results obtained allow for assessing the technical condition of structures after early freezing of the concrete mix, taking into account the changed deformation characteristics of concrete in areas with early freezing of the concrete mix.
About the Authors
D. S. DekhterevRussian Federation
Denis S. Dekhterev, Candidate of Technical Sciences, Department of Reinforced Concrete and Masonry Structures; Associate Professor, Department of Building and Structures Construction
26 Yaroslavskoe shosse, Moscow, 129337;
88 Moskovsky Prospekt, Yaroslavl, 150999
Scopus: 57204418740
D. V. Elifantiev
Russian Federation
Dmitry V. Elifantiev, Lecturer, Department of Reinforced Concrete and Masonry Structures
26 Yaroslavskoe shosse, Moscow, 129337
References
1. Dekhterev D.S. Assessment of the reliability of bent reinforced concrete elements under corrosive effects. E3S Web of Conf. Volume 410, 2023 XXVI International Scientific Conference “Construction the Formation of Living Environment” (FORM-2023) Article Number 02029 Number of page(s) 8 Section Reliability of Buildings and Constructions. DOI: 10.1051/e3sconf/202341002029
2. Dekhterev D.S. Analiticheskaya otsenka vesomosti vliyaniya konstruktsionnykh parametrov stykov kolonn karkasnykh zdaniy na nadezhnost' soyedineniya. Stroitel'stvo i rekonstruktsiya. 2019; 2:11-19. DOI: 10.33979/2073-7416-2019-82-2-11-19 (in Russian).
3. Dekhterev D.S. Kriterii opredeleniya prochnosti betona razrushayushchimi metodami po kontrol'nym obraztsam. Perspektivy nauki. 2023; 4(163):87-91. (in Russian).
4. Dekhterev D.S. K otsenke dolgovechnosti zhelezobetonnykh konstruktsiy na osnove obsledovaniya inzhenerno-tekhnicheskogo sostoyaniya zdaniy. Perspektivy nauki. 2022; 5(152):78-81. (in Russian).
5. Mironov S.A. Teoriya i metody zimnego betonirovaniya. Moscow, Stroyizdat, 1975; 404. (in Russian).
6. Kudaybergenova N.A., Chumadova L.I., Vatin N.I., Bakirova I.G. et al. Kinetika nabora prochnosti betona pri rannem zamorazhivanii. Stroitel'stvo unikal'nykh zdaniy i sooruzheniy. 2015; 2(41):7-17. (in Russian).
7. Serdyukova A.A., Rakhimbayev Sh.M. Vliyaniye otritsatel'nykh temperatur na tverdeniye betona. Beton i zhelezobeton. 2013; 1:52. (in Russian).
8. Popov V.M., Khomyakova I.V. Osobennosti raboty zhelezobetonnykh konstruktsiy v usloviyakh zamorazhivaniya i ottaivaniya. Gornyy informatsionno-analiticheskiy byulleten'. 2005; 4:241. (in Russian).
9. Karpenko N.I., Yarmakovskiy V.N., Karpenko S.N., Kadiyev D.Z. K diagrammam deformirovaniya betona pod nagruzkoy pri deystvii temperatury do –70 °C v zavisimosti ot yego strukturno-tekhnologicheskikh kharakteristik. Stroitel'nyye materialy. 2018; 6:13-19. (in Russian).
10. Yarmakovsky V.N. Strength and deformation characteristics of concrete at low temperatures. Beton i zhelezobeton. 1971; 10.
11. Istomin A.D. The work of central-stretched reinforced concrete elements at negative temperature. Izyestiya vuzov. Tehnologiya tekstilnoy promyshlennosty. 2017; 2:141–144.
12. Leonovich S.N. Strength of structural concrete during cyclic freezing-thawing from the position of fracture mechanics. Brest, BrGTU, 2006; 379.
13. Jia-Bao Yan, Jian Xie. Behaviours of reinforced concrete beams under low temperatures. Construction and Building Materials (China). 2017; 141:410-425.
14. Rostasy F.S., Wiedemann G. Stress-strain-behaviour of concrete at extremely low temperature. Cement and Concrete Research (USA). 1980; 10:565–572.
15. Tarakanov O.V., Belyakova Ye.A., Tarakanova Ye.O. Otsenka vliyaniya rannego zamorazhivaniya na prochnost' tsementno-peschanykh rastvorov. Vestnik Volzhskogo regional'nogo otdeleniya Rossiyskoy akademii arkhitektury i stroitel'nykh nauk. 2010; 13:110-117. (in Russian).
16. Cold Weather Concrete. TECHNICAL BULLETIN TB-01.06. W.R. Grace & Co.-Conn. 2006; 1-4.
17. Lagoyda A.V. O massoperenose i zamorazhivanii betona v rannem vozraste. Beton i zhelezobeton — izbrannyye stat'i. 1994; 7-10. (in Russian).
18. Cecconello I.V., Tutikian B. The influence of low temperature on the evolution of concrete strength. Rev. IBRACON Estrut. Mater. 2012; 5(1):3-8.
19. Husem M., Gozutok S. The effects of low temperature curing on the compressive strength of ordinary and high-performance concrete. Construction and Building Materials. 2005; 19(1):49-53.
20. Krasovskiy P.S. Issledovaniya svoystv betonov, tverdevshikh pri otritsatel'nykh temperaturakh. NT otchet. Khabarovsk, 1988; 92. (in Russian).
21. Fu Y.Y. Experimental Study on Freeze Thaw Resistance Concrete. Advanced Materials Research. 2013; 830:41-44.
22. Wang L.X., Shan X.T., Zhang Y.Q., Li Ch. Sh. et al.Experimental Study of Compression and Carbonation in Concrete Subjected to Freeze-Thaw Environment. Advanced Materials Research. 2014; 887-888:814-818.
23. Trinker A.B. Zimneye betonirovaniye i raboty v usloviyakh vechnoy merzloty. Tekhnologii betonov. 2013; 2(79):42-44. (in Russian).
24. Mozgalev K.M., Golovnev S.G. Osobennosti rannego zamorazhivaniya samouplotnyayushchikhsya betonov. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Stroitel'stvo i arkhitektura. 2012; 38(297):43-45. (in Russian).
25. Rumyantsev Ye.V., Solov'yev V.G., Bayburin A.Kh. Issledovaniye zamerzaniya na prochnost' stsepleniya v betonnykh shvakh pri zimnem betonirovanii. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Stroitel'stvo i arkhitektura. 2022; 22(3):61-70. (in Russian).
26. Tamrazyan A.G. Issledovaniye vliyaniya mestnoy nizkoy prochnosti betona na nesushchuyu sposobnost' izgibayemykh zhelezobetonnykh balok. Zhelezobetonnyye konstruktsii. 2024; 5(1):3-14. (in Russian).
27. Kapriyelov S.S., Gol'denberg A.L., Tamrazyan A.G. O samozalechivanii vysokoprochnogo betona, podvergnutogo destruktsii pri tsiklicheskom zamorazhivanii. Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya tekstil'noy promyshlennosti. 2017; 5(371):56-61. (in Russian).
28.
Review
For citations:
Dekhterev D.S., Elifantiev D.V. Deformation of Early Freezing Concrete in the Assessment Stress-Strain State of Reinforced Concrete Structures. Reinforced concrete structures. 2024;8(4):44-53. (In Russ.) https://doi.org/10.22227/2949-1622.2024.4.44-53