Topological Beam Theory (TBT)
https://doi.org/10.22227/2949-1622.2025.3.41-57
Abstract
The idea of relating deformation to internal force dates back to Galileo (1638), who first examined the elongation of a bar under load, and to Hooke (1678), who formulated the fundamental law of linear elasticity. Building on this foundation, Jacob Bernoulli (1694) — one of the founders of strength-of-materials theory — was the first to pose the problem of the elastic curve, attempting to extend the laws of axial deformation to bending. However, the absence of a closed geometric relation between curvature and internal forces prevented him from completing a general theory. Euler (1744), developing Bernoulli’s ideas, introduced a variational principle based on the minimization of curvature, but employed two critical assumptions — constant horizontal projection and small rotations — which led to the classical linear Euler – Bernoulli beam theory. These ap-proximations removed axial deformation from the energy balance and introduced a hidden geometrically induced axial force not represented in the strain-energy functional. In this work, we propose the Topological Beam Theory (TBT) — the first geometrically exact model of bending formulated in the natural arc-length coordinate and employing the exact curvature definition of Huygens. The model incorporates axial deformation directly into the variational principle, introduces a topological curvature modifier 1/(1 + N/EA), and yields a closed system of equations for the rotation angle, axial force, and bending moment. Thus, the present study completes the conceptual line initiated by Galileo, Hooke, Bernoulli, and Euler: for the first time in over 330 years since Jacob Bernoulli posed the problem, we obtain a fully exact solution for the elastic curve that consistently accounts for both bending and axial deformation within a unified, energetically coherent topological model.
Keywords
About the Author
V. A. NeshchadimovРоссия
Victor A. Neshchadimov, candidate of technical sciences, senior lecturer of the Department of Reinforced Concrete and Masonry Structures
26 Yaroslavskoe shosse, Moscow, 129337
ResearcherID: HTS-6654-2023
References
1. Galilei G. Discorsi e dimostrazioni matematiche intorno a due nuove scienze. Leiden, 1638; 300. (in Russian).
2. Hooke R. De Potentia Restitutiva, or Of Spring: Explaining the Power of Springing Bodies. London, John Martyn, 1678. (in Russian).
3. Huygens C. Horologium Oscillatorium, sive de motu pendulorum ad horologia aptato demonstrationes geometricae. Paris, F. Muguet, 1673; 160. (in Russian).
4. Bernoulli J. Curvatura Laminae Elastica. Ejus Identitas cum Curvatura Lintei a pondere inclusi studií expansí. Radii Circulorum Osculantium in terminis simplicissimis exhibiti, una cum novis quibusdam Theorematis huc pertinentibus. Acta Eruditorum. 1694; 262-276. (in Russian).
5. Bernoulli J. Solutio problematis Leibnitiani de curva accessibus et recessibus aequalibus a puncto dato, mediante rectificatione curva elastica. Acta Eruditorum. 1694; 276-280. (in Russian).
6. Bernoulli J. Véritable hypothèse de la résistance des solides, avec la démonstration de la courbure des corps qui font ressort. Histoire de l’Académie Royale des Sciences de Paris. 1705; 139-150. (in Russian).
7. Bernoulli J. Constructio Curvae Accessus et Recessus aequabilis, Ope Rectificationis Curvae cujusdam algebrai-cae: Addenda nuperæ solutioni Mensis Junii. Opera Omnia, Tomus I. Lausanne; Geneva, Marcum-Michaelem Bousquet, 1744; 608-612. (in Russian).
8. Bernoulli D. Réflexions et éclaircissemens sur les nouvelles vibrations des cordes exposées dans les mémoires de l’Académie de 1747 & 1748. Histoire de l’Académie Royale des Sciences et des Belles Lettres de Berlin avec les Mémoires pour la même année, tirez des registres de cette Académie. 1755; 9:147-172. (in Russian).
9. Bernoulli D. Sur le mélange de plusieurs espèces de vibrations simples isochrones, qui peuvent coexister dans un même système de corps. Histoire de l’Académie Royale des Sciences et des Belles Lettres de Berlin avec les Mémoires pour la même année, tirez des registres de cette Académie. 1755; 9:173-195. (in Russian).
10. Bernoulli D. Letter No. 15 to L. Euler, dated May 24, 1738 / Fuss P.H. (ed.). Correspondence on Mathematics and Physics of Some Famous Geometers of the 18th Century. Vol. 2. Saint Petersburg, Imperial Academy of Sciences, 1843; 446-448. (in Russian).
11. Euler L. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti. Lausanne; Geneva, Marcum-Michaelem Bousquet, 1744. (in Russian).
12. Neshchadimov V.A. Generalized Euler–Bernoulli beam theory with return potential Reinforced Concrete Struc-tures. 2025; 2(10):41-57. DOI: 10.22227/2949-1622.2025.2.41-57 (in Russian). (in Russian).
13. Navier C.-L.-M.-H. Résumé des leçons données à l'École des ponts et chaussées sur l'application de la mécanique à l'établissement des constructions et des machines. Paris, Firmin Didot père et fils, 1826; 500. (in Russian).
14. Frenet J.F. Sur les courbes à double courbure. Journal de Mathématiques Pures et Appliquées. 1847; 17:437-447. (in Russian).
15. Lagrange J.-L. Mécanique analytique. Paris, Veuve Desaint, 1788; 512. (in Russian).
16. Hamilton W.R. On a General Method in Dynamics. Philosophical Transactions of the Royal Society of London. 1834; 124:247-308. (in Russian).
Review
For citations:
Neshchadimov V.A. Topological Beam Theory (TBT). Reinforced concrete structures. 2025;11(3):41-57. (In Russ.) https://doi.org/10.22227/2949-1622.2025.3.41-57
JATS XML




