Preview

Reinforced concrete structures

Advanced search

Generalized Euler – Bernoulli Beam Theory with Return Potential

https://doi.org/10.22227/2949-1622.2025.2.41-57

Abstract

In 1749, L. Euler, building on the ideas of Jakob and Daniel Bernoulli, formulated beam theory in an exact formulation with the hypothesis of plane sections. Later, P.-S. Girard linearized the curvature, simplifying the derivation of analytical solutions, and B.P.E. Clapeyron expressed it in terms of derivatives of the deflection function. As a result, the Euler ± Bernoulli model split into two classes: the linear (classical) formulation with Girard’s curvature and the so-called "exact" geometrically nonlinear formulation with Euler ± Clapeyron curvature. This work demonstrates that the class of geometrically nonlinear problems is a methodological fallacy. The function y(x), traditionally interpreted as the deflection function, is in fact a mapping of a topological space onto a plane in the Cartesian system and describes the distance from the topological abscissa to the neutral axis of the deformed beam. The initial segment of the topological abscissa is nearly rectilinear, which justifies the use of the classical model for small deformations. However, for large deformations, even the "exact" curvature formula proves to be incorrect. A new force component ³ the restoring potential P ³ is introduced, which closes the system of equations and links the rotation angles to the external transverse load. The generalization of beam theory in rectilinear and curvilinear (topological) coordinate systems using a generalized variable i has revealed a deep connection between these computational spaces and enables the reconstruction of the exact geometry of the deformed beam based on classical Euler ± Bernoulli solutions. Thus, this work resolves the fundamental problem posed by Jakob Bernoulli (1694), establishing a generalized beam theory in which linearity and the hypothesis of plane sections are preserved throughout the entire range of elastic behavior.

About the Author

V. A. Neshchadimov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation

Victor A. Neshchadimov, Candidate of Technical Sciences, Senior Lecturer of the Department of Reinforced Concrete and Masonry Structures

26 Yaroslavskoe shosse, Moscow, 129337

ResearcherID: HTS-6654-2023



References

1. Bernoulli J. Curvatura Laminae Elastica. Ejus Identitas cum Curvatura Lintei a pondere inclusi studií expansí. Radii Circulorum Osculantium in terminis simplicissimis exhibiti, una cum novis quibusdam Theorematis huc pertinentibus. Acta Eruditorum. 1694; 262-276.

2. Bernoulli J. Solutio problematis Leibnitiani de curva accessibus et recessibus aequalibus a puncto dato, mediante rectificatione curva elastica. Acta Eruditorum. 1694; 276-280.

3. Bernoulli J. Vpritable hypothqse de la rpsistance des solides, avec la dpmonstration de la courbure des corps qui font ressort. Histoire de l’Acadèmie Royale des Sciences de Paris. 1705; 139-150.

4. Bernoulli J. Constructio Curvae Accessus et Recessus aequabilis, Ope Rectificationis Curvae cujusdam algebraicae: Addenda nuperæ solutioni Mensis Junii. Opera Omnia, Tomus I. Lausanne; Geneva, Marcum-Michaelem Bousquet, 1744; 608-612.

5. Bernoulli D. Rpflexions et pclaircissemens sur les nouvelles vibrations des cordes expospes dans les mpmoires de l’Acadpmie de 1747 & 1748. Histoire de l’Acadèmie Royale des Sciences et des Belles Lettres de Berlin avec les Mèmoires pour la même annèe, tirez des registres de cette Acadèmie. 1755; 9:147-172.

6. Bernoulli D. Sur le mplange de plusieurs espqces de vibrations simples isochrones, qui peuvent coexister dans un mrme systqme de corps. Histoire de l’Acadèmie Royale des Sciences et des Belles Lettres de Berlin avec les Mèmoires pour la même annèe, tirez des registres de cette Acadèmie. 1755; 9:173-195.

7. Bernoulli D. Letter No. 15 to L. Euler, dated May 24, 1738. In: Fuss P.H. (ed.). Correspondence on Mathematics and Physics of Some Famous Geometers of the 18th Century. Vol. 2. Saint Petersburg, Imperial Academy of Sciences, 1843; 446-448.

8. Euler L. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti. Lausanne; Geneva, Marcum-Michaelem Bousquet, 1744.

9. Girard P.S. Traitp analytique de la rpsistance des solides, et des solides d’pgale rpsistance. Auquel on a joint une suite de nouvelles expèriences sur la force, et l’èlasticitè spècifiques des bois de chêne et de sapin. Paris, Firmin Didot & Du Pont, 1798; 48.

10. Todhunter I. A History of the Theory of Elasticity and of the Strength of Materials: From Galilei to the Present Time. Vol. 1: Galilei to Saint-Venant, 1639±1850. Edited and completed by Karl Pearson. London, Cambridge University Press, 1886; 950.

11. Navier C.-L.-M.-H. Rèsumè des leçons donnèes à l'École des ponts et chaussèes sur l'application de la mècanique à l'ètablissement des constructions et des machines. Paris, Firmin Didot pqre et fils, 1826; 500.

12. Clapeyron B.P.E. Mpmoire sur la rpsistance intprieure des corps solides (On the internal resistance of solid bodies). Journal de l'École Polytechnique. 1857;24:1-233.

13. Frenet J. F. Sur les courbes â double courbure. Journal de Mathèmatiques Pures et Appliquèes. 1847; 17:437-447.

14. Timoshenko S.P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1921; 41(245):744-746. DOI: 10.1080/14786442108636264

15. Timoshenko S.P. On the transverse vibrations of bars of uniform cross-section. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1922; 43(253):125-131. DOI: 10.1080/14786442208633855


Review

For citations:


Neshchadimov V.A. Generalized Euler – Bernoulli Beam Theory with Return Potential. Reinforced concrete structures. 2025;10(2):41-57. (In Russ.) https://doi.org/10.22227/2949-1622.2025.2.41-57

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1622 (Print)
ISSN 2949-1614 (Online)